3.373 \(\int \frac{\sec ^{\frac{5}{2}}(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=197 \[ \frac{11 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{7 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{6 a d \sqrt{a \cos (c+d x)+a}}-\frac{\sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}-\frac{19 \sin (c+d x) \sqrt{\sec (c+d x)}}{6 a d \sqrt{a \cos (c+d x)+a}} \]

[Out]

(11*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d*x]]*Sq
rt[Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) - (19*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(6*a*d*Sqrt[a + a*Cos[c + d*x]]
) - (Sec[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2)) + (7*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(
6*a*d*Sqrt[a + a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.510614, antiderivative size = 197, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {4222, 2766, 2984, 12, 2782, 205} \[ \frac{11 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{7 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{6 a d \sqrt{a \cos (c+d x)+a}}-\frac{\sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}-\frac{19 \sin (c+d x) \sqrt{\sec (c+d x)}}{6 a d \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(5/2)/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(11*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d*x]]*Sq
rt[Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) - (19*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(6*a*d*Sqrt[a + a*Cos[c + d*x]]
) - (Sec[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2)) + (7*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(
6*a*d*Sqrt[a + a*Cos[c + d*x]])

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2766

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 2984

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^(n + 1))/(f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec ^{\frac{5}{2}}(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\cos ^{\frac{5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx\\ &=-\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{7 a}{2}-2 a \cos (c+d x)}{\cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}} \, dx}{2 a^2}\\ &=-\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{7 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{6 a d \sqrt{a+a \cos (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-\frac{19 a^2}{4}+\frac{7}{2} a^2 \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}} \, dx}{3 a^3}\\ &=-\frac{19 \sqrt{\sec (c+d x)} \sin (c+d x)}{6 a d \sqrt{a+a \cos (c+d x)}}-\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{7 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{6 a d \sqrt{a+a \cos (c+d x)}}+\frac{\left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{33 a^3}{8 \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{3 a^4}\\ &=-\frac{19 \sqrt{\sec (c+d x)} \sin (c+d x)}{6 a d \sqrt{a+a \cos (c+d x)}}-\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{7 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{6 a d \sqrt{a+a \cos (c+d x)}}+\frac{\left (11 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{4 a}\\ &=-\frac{19 \sqrt{\sec (c+d x)} \sin (c+d x)}{6 a d \sqrt{a+a \cos (c+d x)}}-\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{7 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{6 a d \sqrt{a+a \cos (c+d x)}}-\frac{\left (11 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{2 d}\\ &=\frac{11 \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{2 \sqrt{2} a^{3/2} d}-\frac{19 \sqrt{\sec (c+d x)} \sin (c+d x)}{6 a d \sqrt{a+a \cos (c+d x)}}-\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{7 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{6 a d \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [F]  time = 0, size = 0, normalized size = 0. \[ \text{\$Aborted} \]

Verification is Not applicable to the result.

[In]

Integrate[Sec[c + d*x]^(5/2)/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

$Aborted

________________________________________________________________________________________

Maple [A]  time = 0.441, size = 258, normalized size = 1.3 \begin{align*} -{\frac{\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) \sqrt{2}}{12\,{a}^{2}d \left ( -1+\cos \left ( dx+c \right ) \right ) \left ( 1+\cos \left ( dx+c \right ) \right ) ^{2}} \left ( -33\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sin \left ( dx+c \right ) \arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}-66\,\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) \arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}-33\,\sin \left ( dx+c \right ) \arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}+19\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}\sqrt{2}-7\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sqrt{2}-16\,\cos \left ( dx+c \right ) \sqrt{2}+4\,\sqrt{2} \right ) \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{5}{2}}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(5/2)/(a+cos(d*x+c)*a)^(3/2),x)

[Out]

-1/12/d*2^(1/2)/a^2*(-33*cos(d*x+c)^2*sin(d*x+c)*arcsin((-1+cos(d*x+c))/sin(d*x+c))*(cos(d*x+c)/(1+cos(d*x+c))
)^(3/2)-66*cos(d*x+c)*sin(d*x+c)*arcsin((-1+cos(d*x+c))/sin(d*x+c))*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)-33*sin(d
*x+c)*arcsin((-1+cos(d*x+c))/sin(d*x+c))*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)+19*cos(d*x+c)^3*2^(1/2)-7*cos(d*x+c
)^2*2^(1/2)-16*cos(d*x+c)*2^(1/2)+4*2^(1/2))*cos(d*x+c)*(1/cos(d*x+c))^(5/2)*(a*(1+cos(d*x+c)))^(1/2)*sin(d*x+
c)/(-1+cos(d*x+c))/(1+cos(d*x+c))^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{\frac{5}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^(5/2)/(a*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.92235, size = 451, normalized size = 2.29 \begin{align*} -\frac{33 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{3} + 2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) + \frac{2 \, \sqrt{a \cos \left (d x + c\right ) + a}{\left (19 \, \cos \left (d x + c\right )^{2} + 12 \, \cos \left (d x + c\right ) - 4\right )} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}}{12 \,{\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/12*(33*sqrt(2)*(cos(d*x + c)^3 + 2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c
) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) + 2*sqrt(a*cos(d*x + c) + a)*(19*cos(d*x + c)^2 + 12*cos(d*x
 + c) - 4)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^2*d*cos(d*x + c)^3 + 2*a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x + c
))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(5/2)/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{\frac{5}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(5/2)/(a*cos(d*x + c) + a)^(3/2), x)